单调算子(monotonic operator)的概念起源于可微凸泛函的导数。设φ是在B空间X上定义的这种函数,则 <φ'(x)-φ'(y),x-y>≥0,对任意的x,y∈X,其中<,>表示X'与X之间的对偶。直线上的可微凸函数的导函数是单调不减的,于是就把满足特定条件的算子T:X→X' ,称为单调算子,如果α>0则称为强单调算子。自反B空间上弱线段连续的强单调算子是 X→X* 的满射(所谓弱线段连续,指对任意的x,y∈X,T(x+ty)→T(x)当 t→0)。这个满射性定理是G.J.明蒂、F.E.布劳德给出的,它在非线性算子半群理...